• Asignatura: Matemáticas
  • Autor: alfredovizaguillen
  • hace 8 años

En un corral hay puercos y gallinas que hacen un total de 61 cabezas y 196 patas,¿ Cuantos puercos y gallinas hay? ​

Respuestas

Respuesta dada por: gomezreyesnayeli
264

Respuesta:

puercos :37         gallinas:24

Explicación paso a paso:

  x + y = 61

2x + 4y =196

A la primera ecuación multiplicamos por ( -2)

Quedándonos: -2x-2y= -122

                           2x+4y=196

Reduciendo: 2y=79

                       y=37

Remplazando:  X + Y =61

                          x + 37 =61

                           x= 24

Respuesta dada por: Hekady
185

En el corral hay 37 puercos y 24 gallinas.

   

⭐Resolveremos el problema mediante un sistema de ecuación (2 x 2) con resolución mediante sustitución.

 

  • P: cantidad de puercos
  • G: cantidad de gallinas

 

Hay un total de 61 cabezas, cada animal tiene 1:

P + G = 61

 

Despejamos "G": G = 61 - P  (*)

   

Hay 196 patas, los puercos tienen 4 y cada gallina apenas 2:

4P + 2G = 196

 

Sustituimos el despeje  (*):

4P + 2 · (61 - P) = 196

4P + 122 - 2P = 196

2P = 196 - 122

2P = 74

P = 74/2

P = 37 ✔️ → Cantidad de puercos

 

Cantidad de gallinas:

G = 61 - 37 = 24 ✔️

 

Resolución de otro problema de sistema de ecuaciones 2x2:

  • https://brainly.lat/tarea/25836793
Adjuntos:
Preguntas similares