Respuestas
Respuesta: En este caso, uno de los elementos tiene una limitación en su valor: la primera cifra no puede ser cero
porque entonces ese cero a la izquierda se eliminaría y el número tendría a lo sumo 5 cifras. Por lo tanto,
la primera cifra sólo puede tomar 9 posibles valores (1,2,...,9), para un total de
9×10×10×10×10×10 = 900.000 números.
Este problema se puede resolver también de otra forma alternativa, ya que el menor número que tiene
exactamente 6 cifras es el 100.000, y el mayor es 999.999, y todos los números entre ambos, y ninguno
más, tiene exactamente 6 cifras, para un total de
999.999 −100.000 +1= 900.000 números.
Sumamos uno a la diferencia entre 999.999 y 100.000 porque ambos tienen 6 cifras y deben ser contados.
Continuamos con otro ejemplo. En el mus se reparten a cada jugador 4 cartas de una baraja de 40 cartas
distintas. ¿De cuántas formas distintas me pueden repartir 4 cartas en el mus? ¿De cuántas formas me
pueden tocar los 4 reyes?
Ahora, el resultado de la primera carta que se reparta afecta a las otras 3, porque ninguna de estas 3 puede
ser igual a la primera, que ya está repartida. Por lo tanto, aunque la primera carta que me repartan es una
de entre 40, la segunda carta deberá ser una de entre las 39 restantes, la tercera una de las 38 restantes, y
la cuarta una de entre las 37 restantes, para un total de
40×39×38×37 = 2.193.360 posibles formas de repartir 4 cartas.
Para que me toquen los cuatro reyes, la primera carta debe ser uno de estos cuatro reyes, la segunda uno
de los tres restantes, la tercera uno de los dos restantes, y la última el rey que quede, para un total de
4×3× 2×1= 24 posibles formas de repartir los 4 reyes.
¡De repente, tener cuatro reyes parece muy difícil!
Explicación: