En una granja hay conejos y gallinas. Hemos contado 26 cabezas y 62 patas. ¿ Cuántos conejos y cuántas gallinas hay?

Respuestas

Respuesta dada por: FrankySev
18

Respuesta:

Hay 5 conejos y 21 gallina.

Explicación paso a paso:

Digamos que hay "y" conejos y "x" gallinas.

¿Cuántas cabezas de conejos hay?  Hay "y" cabezas de conejo.

¿Cuántas cabezas de gallinas hay?  Hay "x" cabezas de gallina.

¿Cuántas patas de conejos hay?  Hay "4y" patas de conejo.

¿Cuántas patas de gallinas hay?  Hay "2x" patas de gallina.

La suma de las cabezas, según enunciado, es 26, luego:

x + y = 26

La suma de las patas, según enunciado, es 62, luego:

2x + 4y = 62

Ambas ecuaciones forman un sistema de ecuaciones, que se puede resolver, por ejemplo, mediante reducción.

Para ello, multiplicamos ambos miembros de la primera ecuación por -2:

-2x - 2y = -52

2x + 4y = 62

Sumamos una y otra ecuación, agrupando términos semejantes, y resulta:

-2x + 2x - 2y + 4y = -52 + 62

2y = 10

y = 10/2

y = 5

Sustituimos ese valor en la primera ecuación, y despejamos "x":

x + y = 26

x + 5 = 26

x = 26 -5

x = 21

Como se había establecido al principio que hay "y" conejos y "x" gallinas, resulta que hay 5 conejos y 21 gallinas.

Preguntas similares