Respuestas
Respuesta:
Explicación paso a paso:
A = [(x²-25)/(x-5) /x∈z, 0<x<6}
x puede tomar valores desde 1 hasta 5
hallamos los números reemplazando valores
x= 1 (1²-25)/(1-5) = (1 -25)/(-4) = -24/-4= 6 ∈z
x =2 (2²-25)/(2-5) = (4-25)/(-3) =21/-3 = 7 ∈z
x = 3 (3²-25)/(3-5) =( 9-25)/(-2) = -16/-2 = 8 ∈z
x = 4 (4²-25)/(4-5) = (16-25)/(-1) = -9/-1 =9 ∈z
x =5 (5²-25)(5-5) = (25-25)/(5-5) = 0/0 =0 ∈z
x = 6 (6²-25)/(6-5) = 36-25/1 = 11
A =[ 6;7;8;9;10,11}
hallando el conjunto B
B=[{(3x-1)/1]∈z/-1≤x≤8} x tomara valores desde -1 hasta 8
x =-1 (3*-1+1)/2 = (-3+1/2) = -2/2 = -1 ∈z
x =0 (3*0+1)/2 = 1/2 ∉z
x =1 (3*1+1)/2 = 4/2 = 2 ∈z
x =2 (3*2+1) /2 = 7/2 ∉z
x =3 (3*3+1) = 10/2 =5 ∈z
x =4 (3*4+1) = 13/2 ∉z
x =5 (3*5+1) /2 = 16/2 = 8 ∈z
x = 6 (3*6+1) = 19/2 ∉z
x = 7 (3*7+1)/2 = 22/2 = 11 ∈z
x = 8 (3*8+1) /2 = 25/2 ∉z
B = {-1;2,5,8,11}
hallando la intersección entre A y B
A ={6,7,8,9,10,11} B = {-1,2,5,8,11} solo se repite el 8,11
entonces A∩B = {8,11}
ENTONCES n(A∩B) = 1---------------------------------------1
Hallando AΔB son todos los elementos que no se repiten de los 2 conjuntos
A ={6,7,8,9,10,11} B = {-1,2,5,8,11}MENOS EL 8Y 11
AΔB = {-1,2,5,6,7,9,10}
ENTONCES n(AΔB) = 7
hallando
n(AΔB)+n(A∩B) = 7+2 =9