Usando la formula general:

(2x+5)(2x-3)=209

Respuestas

Respuesta dada por: barney3
1

Respuesta:

CS= {\{7,-8 \}}

Explicación paso a paso:

Producto notables:

(x + a)(x + b)={x}^{2}+(a+b)x+ab

.......

(2x + 5)(2x - 3) = 209

 {(2x)}^{2}  + (5 - 3)2x + (5)( - 3) = 209

  {4x}^{2} + (2)2x - 15 = 209

  {4x}^{2} +4x - 15 = 209

  {4x}^{2} +4x - 15 - 209 = 0

 {4x}^{2} +4x -224 = 0

  \frac{{4x}^{2} +4x -224}{4} =  \frac{0}{4}

  {x}^{2} + x - 56 =0

 {1x}^{2} +1 x - 56 =0

a = 1 \:  \:  \:  \:  \:  \:  \:  \:  \: b = 1 \:  \:  \:  \:  \:  c =  - 56

Fórmula general:

x_{1,2}=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

x_{1,2}=\frac{-1\pm\sqrt{1^2-4(1)( - 56)}}{2(1)}

x_{1,2}=\frac{-1\pm\sqrt{1 + 224}}{2}

x_{1,2}=\frac{-1\pm\sqrt{225}}{2}

x_{1,2}=\frac{-1\pm15}{2}

________________________

x_{1}=\frac{-1 + 15}{2} \:   \:  \:  \: \:  \:  \:  \:  \: x_{2}=\frac{-1 - 15}{2}

x_{1}=\frac{14}{2} \:    \:  \: \:  \:  \: \:  \:  \:  \:  \: x_{2}=\frac{-16}{2}

x_{1}= 7\:   \:  \:  \: \:  \:  \:  \:  \: x_{2}= - 8

CS= {\{7,-8 \}}

Preguntas similares