Hola, quien me puede ayudar, es urgente.


En la siguiente figura se muestra la gráfica de la función f(x)=x^2+1 y la región acotada por los ejes cartesianos, la gráfica y el eje x=3. Además, esta área ha sido partida en tres secciones del mismo ancho h=1, dando lugar a las áreas A_1, A_2 y A_3.

Adjuntos:

Respuestas

Respuesta dada por: carbajalhelen
0

El área aproximada bajo la curva es:

A = 13 u²

Si se divide cada área en dos partes iguales para tener 6 áreas del mismo ancho h = 1/2, las otras áreas obtenidas:

A₁ = 9/16 u²

A₂ = 13/16 u²

A₃ = 21/16 u²

A₄ = 33/16 u²

A₅ = 49/16 u²  

A₆ = 69/16 u²

El área de la región acota por f(x) = x²-2x+1 y g(x) = -x+3 es:

A = 9/2 u²

Explicación:

Datos;

1. áreas de trapecios;

A₁ = [(base menor)+(base mayor)](altura)/2

siendo;

base menor = 1

base mayor = 2

altura = h = 1

sustituir;

A₁ = [(1)+(2)](1)/2

A₁ = 3/2 u²

A₂ = [(base menor)+(base mayor)](altura)/2

siendo;

base menor = 2

base mayor = 5

altura = h = 1

sustituir;

A₂ = [(2)+(5)](1)/2

A₂ = 7/2 u²

A₃ = [(base menor)+(base mayor)](altura)/2

siendo;

base menor = 5

base mayor = 11

altura = h = 1

sustituir;

A₃ = [(5)+(11)](1)/2

A₃ = 8 u²

La suma de es la aproximación del área bajo la curva:

A = A₁ + A₂ + A₃

A = 3/2+7/2+8

A = 13 u²

2. Si se divide cada área en dos partes iguales para tener 6 áreas del mismo ancho;

h = 1/2

Las áreas obtenidas;

A₁ = [(base menor)+(base mayor)](altura)/2

siendo;

base menor = 1

base mayor : f(1/2) = (1/2)²+1 = 1.25

sustituir;

A₁ = [(1)+(1.25)](1/2)/2

A₁ = 9/16 u²

A₂ = [(base menor)+(base mayor)](altura)/2

siendo;

base menor = 1.25

base mayor : f(1) = (1)²+1 = 2

sustituir;

A₂ = [(1.25)+(2)](1/2)/2

A₂ = 13/16 u²

A₃ = [(base menor)+(base mayor)](altura)/2

siendo;

base menor = 2

base mayor : f(1.5) = (1.5)²+1 = 3.25

sustituir;

A₃ = [(2)+(3.25)](1/2)/2

A₃ = 21/16 u²

A₄ = [(base menor)+(base mayor)](altura)/2

siendo;

base menor = 3.25

base mayor : f(2) = (2)²+1 = 5

sustituir;

A₄ = [(3.25)+(5)](1/2)/2

A₄ = 33/16 u²

A₅ = [(base menor)+(base mayor)](altura)/2

siendo;

base menor = 5

base mayor : f(2.5) = (2.5)²+1 = 7.25

sustituir;

A₅ = [(5)+(7.25)](1/2)/2

A₅ = 49/16 u²

A₆ = [(base menor)+(base mayor)](altura)/2

siendo;

base menor = 7.25

base mayor : f(3) = (3)²+1 = 10

sustituir;

A₆ = [(7.25)+(10)](1/2)/2

A₆ = 69/16 u²

3.El área de la región acota por f(x) = x²-2x+1 y g(x) = -x+3 es:

\int\limits^b_a {g(x)-f(x)} \, dx

Intersección se las funciones;

x²-2x+1 = -x+3

x² -x -2 = 0

Aplicar la resolvente;

x₁,₂ = -b±√(b²-4ac)/2a

x₁,₂ = 1±√(1²-4(-2))/2

x₁,₂ = 1±3/2

x₁ = 2

x₂ = -1

A=\int\limits^2_{-1} {[(-x+3)-(x^{2}-2x+1 )]} \, dx

A=\int\limits^2_{-1} {(-x^{2}+2x-1- x+3)} \, dx

A=\int\limits^2_{-1} {(-x^{2}+x+2)} \, dx

Aplicar propiedad de la suma;

A=\int\limits^2_{-1} {x^{2}\, dx-\int\limits^2_{-1}x\, dx-\int\limits^2_{-1}2} \, dx

A =-\frac{x^{3} }{3} /^2_{-1}+x^{2}  /^2_{-1} +2x /^2_{-1}

A = -3+3/2+6

A =  9/2 u²

Adjuntos:

soyrenemh: Gracias por tu ayuda.
Respuesta dada por: giogutie4200
0

Respuesta:

el de arriba tiene la respuesta :3

Preguntas similares