The vapor pressure of a liquid doubles when the temperature is raised from 77
°
C to 85
°
C. At what temperature will the vapor pressure be seven times the value at 77
°
C?
Respuestas
Knowing that the vapor pressure of a liquid doubles when temperature changes from T₁ to T₂ (known values), it's required to calculate the temperature T₂ if vapor pressure P₂ is 7 times the P₁ value at same T₁ value.
T₁ = 77 °C = ( 77 + 273) K = 350 K
T₂ = 85 °C = ( 85 + 273) K = 358 K
We know that : P₂ / P₁ = 2
P₁ and P₂ : vapor pressures at temperatures T₁ and T₂
Using the Clausius- Clapeyron equation, we can calculate the enthalpy of vaporization of the liquid:
ln P₂/P₁ = - ΔHvap / R × (1/T₂ - 1/T₁)
ΔHvap = - R ln (P₂/P₁) / (1/T₂ - 1/T₁) R = 8,314 J /mol . K
ΔHvap = - 8,314 J /mol . K × (ln 2) / ( 1/358 - 1/350) = 96047 J/mol
Now, we can calculate T₂ if T₁ = 77 °C and P₂/P₁ = 7 :
T₁ = 77 °C = 350 K
ln P₂/P₁ = - ΔHvap / R × (1/T₂ - 1/T₁)
ln 7 = - (96047 J/mol / 8,314 J /mol . K) × (1 /T₂ - 1 /350 K)
1,946 = - 11552,4 × (1 /T₂ - 1 /350) ⇒ T₂ = 372 K