Determina la ecuación ordinaria y general de la parábola cuyo vértice es de (-3, 4) y foco (1, 4)
Respuestas
Respuesta dada por:
7
La forma ordinaria de la ecuación es en este caso:
(y - k)² = 2 p (x - h)
(h, k) son las coordenadas del vértice.
2 p es la longitud del lado recto.
p/2 es la distancia entre el vértice y el foco:
p/2 = 4; 2 p = 16
Forma ordinaria:
(y - 4)² = 16 (x + 3)
Forma general: quitamos los paréntesis.
y² - 8 y + 16 = 16 x + 48
y² - 16 x - 8 y - 32 = 0
Adjunto dibujo a escala.
Mateo
Adjuntos:
Preguntas similares
hace 6 años
hace 6 años
hace 8 años
hace 9 años