f(x)= x^2/4 -3/2x -27/4 Hallar el discriminante Hallar las raíces o puntos de corte de la función Hallar el dominio Hallar el rango Grafique la función

Respuestas

Respuesta dada por: arodriguez40
1

La función f(x)= x^2/4 -3/2x -27/4 tiene como Dominio todo el conjunto de los números reales, o sea el intervalo (-∞,+∞). El discriminante es Δ = 9. Por último, las raíces son x₁ = -3   y   x₂ = 9.

La función es cuadrática con la variable independiente x en posiciones de numerador. Por lo tanto, no hay limitación en los valores que puede asumir. Dominio = (-∞,+∞)

El discriminante es

∆ = b² - 4ac = (-3/2)² - 4(1/ 4)(27/ 4)   =   9/4  +   27/4  => ∆ = 9

Las raíces se calculan mediante la siguiente fórmula

x₁ = (-b - √Δ)/2a = (3/2 - √9)/( 2)(1/4) => x₁ = -3

x₂ = (-b + √Δ)/2a = (3/2 + √9)/( 2)(1/4) => x₂ = 9

 

Adjuntos:
Preguntas similares