Calcular la energia cinetica de un cuerpo de 90N que se encuentra a 95 metros del suelo, al momento de llegar al suelo?

Respuestas

Respuesta dada por: ItsAlv
0

Datos:

P = 90 N

h = 95 m

Explicación:

El teorema de la energía mecánica es:

ΔEM = ΔEc + ΔEp + Hf

Como no hay fuerzas de rozamiento:

Hf = 0

ΔEM = ΔEc + ΔEp = 0

Luego:

ΔEM = ΔEc + ΔEp = Ec2 - Ec1 + Ep2 - Ep1

En el instante inicial su altura es máxima y su velocidad es nula, por lo tanto:

ΔEM = Ec2 + Ep2 - Ep1

Como aún no se movió:

ΔEM = - Ep1

ΔEM = - Ep1 = -m·g·h

Tomando el eje "y" positivo hacia arriba y g se dirige hacia abajo:

g = 10 m/s²

Recordemos que:

P = m·g

Si:

P = 90 N

90 N = m·10 m/s²

m = 9 kg

Tenemos:

Ep1 = -m·g·h

Ep1 = -9 kg·(-10 m/s²).95 m

Ep1 = 8.550 J

Para éste caso:

ΔEM = 8.550 J

Ec1 = 0 J

Para este punto tenemos:

ΔEM = Ec2 + Ep2 - Ep1 = 0

Ec2 = Ep2 + Ep1

½·m·v2² = - m·g·h2 + m·g·h1

½·v2² = - g·h2 + g·h1

v2² = - 2·g·(h2 - h1)

v2² = - 2·10 m/s²·(35 m - 95 m)

v2² = 1.200 m²/s²

Luego:

Ec2 = ½·m·v2²

Ec2 = ½·9 kg·1200 m²/s²

Ec2 = 5.400 J

Ep2 = m·g·h2

Ep2 = 9 kg·10 m/s²·35 m

Ep2 = 3.150 J

EM2 = Ec2 + Ep2

EM2 = 5.400 J + 3.150 J

EM2 = 8.550 J

En el suelo (punto 3) tenemos h3 = 0 m, la velocidad será máxima, y toda la energía potencial se habrá transformado en cinética.

Por lo que tenemos:

ΔEM = Ec3 + Ep3 - Ep1 = 0

Ep3 = 0 J

Ec3 - Ep1 = 0

Ec3 = Ep1

Ec3 = 8.550 J

EM3 = Ec3 + Ep3

EM3 = 8.550 J

Preguntas similares