X+11=10ײ como resolver con el TCP

Respuestas

Respuesta dada por: Zatlacath
3

Respuesta:

x + 11 = 10x {}^{2}

x + 11 - 10x {}^{2}  = 0

 - 10x {}^{2}  + x + 11 = 0

 - 10x {}^{2}  + x =  - 11

 - 1( - 10x {}^{2}  + x ) =  - 1( - 11)

10x {}^{2}   -  x = 11

 \frac{10x {}^{2} - x }{10}  =  \frac{11}{10}

x {}^{2}  -  \frac{1}{10}x  =  \frac{11}{10}

x {}^{2}  -  \frac{1}{10}x  +   (\frac{ \frac{1}{10} }{2} ) {}^{2}  =  \frac{11}{10}  + ( \frac{ \frac{1}{10} }{2} ) {}^{2}

x {}^{2}  -  \frac{1}{10} x + ( \frac{1}{20} ) {}^{2}  =  \frac{11}{10}  +  (\frac{1}{20} ) {}^{2}

x {}^{2}  -  \frac{1}{10}  x+ ( \frac{1}{20} ) {}^{2}  =  \frac{11}{10}  +  \frac{1 {}^{2} }{20 {}^{2} }

x {}^{2}  -  \frac{1}{10}x  + ( \frac{1}{20} ) {}^{2}  =  \frac{11}{10}  +  \frac{1}{400}

x {}^{2}  -  \frac{1}{10} x + ( \frac{1}{20} ) {}^{2}  =  \frac{(400 \div 10)11}{400}  +  \frac{1}{400}

x {}^{2}  -  \frac{1}{10} x + ( \frac{1}{20} ) {}^{2}  =  \frac{(40)11}{400}  +  \frac{1}{400}

x {}^{2}  -  \frac{1}{10} x + ( \frac{1}{20} ) {}^{2}  =  \frac{440}{400}  +  \frac{1}{400}

x {}^{2}  -  \frac{1}{10} x  +  (\frac{1}{20} ) {}^{2}  =  \frac{440 + 1}{400}

(x -  \frac{1}{20} ) {}^{2}  =  \frac{441}{400}

x -  \frac{1}{20}  =  +  -  \sqrt{ \frac{441}{400} }

x -  \frac{1}{20}  =  +  -  \frac{ \sqrt{441} }{ \sqrt{400}}

x -  \frac{1}{20}  =  +  -  \frac{21}{20}

x =  \frac{1}{20}  +  -  \frac{21}{20}

x1 =  \frac{1}{20}  +  \frac{21}{20}

x1 =  \frac{1 + 21}{20}

x1 =  \frac{22}{20}

x1 =  \frac{11}{10}

x2 =  \frac{1}{20}  -  \frac{21}{20}

x2 =  \frac{1 - 21}{20}

x2 =  \frac{ - 20}{20}

x2 =  - 1

Preguntas similares