Un niño construye un juguete con un resorte que mide 2.00 x 〖10〗^1 cm de longitud (cuando sobre no se aplica fuerzas externas) y una tapa de 2.00 〖10〗^1cm de diámetro, como se muestra en la figura 8. Inicialmente el niño estira el resorte verticalmente 85,0 cm (d1) y luego mueve el juguete horizontalmente 62,2 cm (d1), es decir de la posición (a) a la posición (b). Si la constante de elasticidad del resorte es 28,9 N/m. Calcular:
La energía potencial elástica en la posición (a) y en la posición (b).
El l trabajo neto realizado.
Respuestas
Los valores de la energía potencial en los puntos a y b son :
Epa = 2.92 J Epb = 6.10 J
El trabajo es de : W = 3.18 J
xo = 2*10cm
D = 2*10cm
d1 = 85 cm
d2 = 62.2cm
k = 28.9 N/m
Para la solución se aplican las ecuaciones como se muestra a continuación :
La distancia que forma el resorte y la tapa es de 40cm
x = xo + D = 20cm + 20cm = 40cm si se estira hasta 85cm
x1 = 45cm
Epa = 1/2kx²
Epa = 1/2*(28.9 N/m)*(0.45m)²
Epa = 2.92 J
La distancia estirada en B es
d = √(62.2cm)² + (85cm)² = 105.32cm
x2 = 105.32cm - 40cm = 65.32cm = 0.65m
Epb = 1/2 (28.9 N/m) (0.65m)²
Epb = 6.10 J
Trabajo
W = Emf -Emi
W = 6.10J - 2.92J
W = 3.18 J