Cuál es el mínimo número de comparaciones (<, >, <=, >=, ==,!=) que sería necesario realizar para encontrar el mayor entre cinco (5) números enteros? Group of answer choices 6 7 3 4
Respuestas
Respuesta:
Cómo las comparaciones son operaciones binarias, es decir, sólo se pueden comparar de dos en dos elementos, se tendrían que comparar primero 4 números en parejas (es decir, dos comparaciones), de esas se obtendrá el mayor de cada pareja por lo que quedarán descartados 2 números y ahora resta comparar 3. Siguiendo la misma lógica, ahora comparamos dos números (una comparación) y obtenemos el mayor de estos dos, descartando el otro. Así, finalmente haremos una última comparación entre los dos restantes para obtener el mayor.
Es decir, tendremos que hacer mínimo 4 comparaciones para obtener el mayor de 5 números.
Te dejo un ejemplo para ser un poquito más clara.
Si queremos encontrar el mayor entre 12, 6, 3, 9, 4, hacemos:
Ahora descartamos 6 y 3 por ser el número menor de cada comparación y nos quedamos sólo con 12, 9 y 4. Hacemos la siguiente comparación:
Descartamos entonces el 9 y sólo nos quedan 12 y 4 para comparar:
Y entonces, de nuestras 4 comparaciones pudimos obtener el número mayor, que resultó ser 12.