Se lanza una pelota hacia arriba. La función de posición de la pelota en el tiempo t es:
s(t)=5t−t²
Calcule la velocidad instantánea (v) en el tiempo =1/4 usando la definición de la derivada.
Respuestas
Respuesta dada por:
3
El valor de la derivada y por ende de la velocidad es de f'(1/4) = 4.5m/s
Explicación paso a paso:
La definición de la derivada esta dada por la siguiente expresión:
f'(xo) = lim h→0 [f(xo + h) - f(xo)]/h
sustituimos para la velocidad a los 1/4 de tiempo
f'(1/4) = lim h→0 [5(1/4 + h) - (1/4 + h)² - 5(1/4) + (1/4)²]/h
f'(1/4) = lim h→0 [5/4 + 5h -1/16 -1/2h - h² - 5/4 +1/16] / h
f'(1/4) = lim h→0 [5/4 + 5h -1/16 -1/2h - h² - 5/4 + 1/16] / h
f'(1/4) = lim h→0 [9/2h - h²] / h
f'(1/4) = 4.5
La derivada de la función posición es la velocidad por en de la velocidad en el tiempo 1/4s es de 4.5m/s
Preguntas similares
hace 6 años
hace 6 años
hace 9 años
hace 9 años
f'(1/4) = lim h→0 [5/4 + 5h -1/16 -1/2h - h² - 5/4 + 1/16] / h
Cual es la diferencia de una a otra?