1. Encontrar las potencias, raíces y
logaritmos de los siguientes
ejercicios​

Adjuntos:

Respuestas

Respuesta dada por: carbajalhelen
0

Las potencias, raíces y logaritmos de los ejercicios son:

a. (\frac{5}{3})^{4} =\frac{625}{81}

b. (\frac{7}{2})^{3} =\frac{343}{8}

c. tex](\frac{6}{9})^{6} =\frac{64}{729} [/tex]

d. \sqrt[3]{\frac{27}{125}} =\frac{3}{5}

e. \sqrt[3]{\frac{27}{125}} =\frac{5}{2}

f. \sqrt[4]{\frac{625}{16}}= \frac{5}{2}

g. log_{3/35}(\frac{27}{125})=3.log_{3/35}(3)-3log_{3/35}(5)

h. log_{1/7}(\frac{1}{49})=2

a. (\frac{5}{3})^{4}

Aplicamos propiedades de exponente: (\frac{a}{b})^{c}=\frac{a^{c}}{b^{c}}

(\frac{5}{3})^{4}= \frac{5^{4}}{3^{4}}

(\frac{5}{3})^{4} =\frac{625}{81}

b. (-\frac{7}{2})^{3}

Aplicamos propiedades de exponente: (\frac{a}{b})^{c}=\frac{a^{c}}{b^{c}}

(-\frac{7}{2})^{3}= -\frac{7^{3}}{2^{3}}

(-\frac{7}{2})^{3} = -\frac{343}{8}

c. (-\frac{6}{9})^{6}

Aplicamos propiedades de exponente: (\frac{a}{b})^{c}=\frac{a^{c}}{b^{c}}

(\frac{6}{9})^{6}= \frac{6^{6}}{9^{6}}

6 y 9 son múltiplos de 3;

6/9 = 2/3

(\frac{6}{9})^{6}= \frac{2^{6}}{3^{6}}

(\frac{6}{9})^{6} =\frac{64}{729}

d. \sqrt[3]{\frac{27}{125} }

Reescribimos;

27 = 3³

125 = 5³

\sqrt[3]{\frac{27}{125}} =\sqrt[3]{\frac{3^{3}}{5^{3}}}

Aplicamos propiedades de raíces: \sqrt[n]{\frac{a}{b}}= \frac{\sqrt[n]{a} }{\sqrt[n]{b} }

\sqrt[3]{\frac{27}{125}}= \frac{\sqrt[3]{3^{3}} }{\sqrt[3]{5^{3}} }

\sqrt[3]{\frac{27}{125}} =\frac{3}{5}

e.  \sqrt[4]{\frac{625}{16} }

Reescribimos;

625 = 25²

16 = 4²

\sqrt[4]{\frac{625}{16}} =\sqrt[4]{\frac{25^{2}}{4^{2}}}

Aplicamos propiedades de raíces: \sqrt[n]{\frac{a}{b}}= \frac{\sqrt[n]{a} }{\sqrt[n]{b} }

\sqrt[4]{\frac{625}{16}}= \frac{\sqrt[4]{25^{2}} }{\sqrt[4]{4^{2}} }

\sqrt[4]{\frac{625}{16}}= \frac{\sqrt{25}}{\sqrt{4}}

\sqrt[3]{\frac{27}{125}} =\frac{5}{2}

f.  \sqrt[5]{\frac{1}{32} }

Reescribimos;

32 = 2^5

\sqrt[5]{\frac{1}{32}} =\sqrt[5]{\frac{1}{2^{5}}}

Aplicamos propiedades de raíces: \sqrt[n]{\frac{a}{b}}= \frac{\sqrt[n]{a} }{\sqrt[n]{b} }

\sqrt[5]{\frac{1}{32}}= \frac{\sqrt[5]{1} }{\sqrt[5]{2^{5}} }

\sqrt[4]{\frac{625}{16}}= \frac{5}{2}

g. log_{3/35}(\frac{27}{125})

Aplicar propiedad de logaritmos: log_{c}(\frac{a}{b})=log_{c}(a)-log_{c}(b)

log_{3/35}(\frac{27}{125})=log_{3/35}(27)-log_{3/35}(125)

Reescribir;

27 = 3³

125 = 5³

log_{3/35}(\frac{27}{125})=log_{3/35}(3^{3})-log_{3/35}(5^{3})

Aplicando propiedades de logaritmos: log_{a} (x^{b}) = b.log_{a}(x)

log_{3/35}(\frac{27}{125})=3.log_{3/35}(3)-3log_{3/35}(5)

h. log_{1/7}(\frac{1}{49})

Reescribimos:

1/49 = (1/7)²

log_{1/7}(\frac{1}{49})=log_{1/7}( (\frac{1}{7})^{2})

Aplicando propiedades de logaritmos: log_{a} (x^{b}) = b.log_{a}(x)

log_{1/7}(\frac{1}{49})=2.log_{1/7}(\frac{1}{7})

log_{1/7}(\frac{1}{49})=2

Preguntas similares