Respuestas
Al resolver aplicando las propiedades de logaritmos resulta:
1) 7/2.
2) -19/6.
3) -2/3 .
4) -1/4 .
5) -3 .
Al resolver aplicando las propiedades de logaritmos, las cuales son :
a) Log ( a*b) = loga + logb
b) Log (a/b) = loga - logb
c) Log aⁿ = n * log a
d) Logⁿ√ a = (1/n)*loga
e) Logₐ a = 1
f) Log ₐ 1= 0
1) Log ₃( 27*√3 ) = Log₃ 27 * Log₃ √3 = Log₃ 3³ + (1/2)*Log₃3
= 3* Log₃ 3 + ( 1/2 )*1 = 3*1 + 1/2 = 3+1/2 = 7/2
2) Log₅[ (1/125) *√5 ]/∛25= Log₅( 1/125) + Log₅√5 - Log₅∛25
= Log₅ 1 - Log₅ 125 + (1/2)* Log₅5 - (1/3)* Log₅5²
= 0 - Log₅5³ + 1/2* 1 - 2/3 *1
= -3* Log₅ 5 + 1/2 - 2/3
= - 3 +1/2 -2/3 = -19/6
3) Log₃ ∛3 *27/81 = ( 1/3)* Log₃3 + Log₃3³ - Log₃ 3⁴
= (1/3)* 1 + 3* Log₃ 3 - 4* Log₃ 3
= 1/3 + 3*1 - 4* 1 = 1/3 +3 - 4 = -2/3
4) Log₄ ∛( 1/4 * √2 ) = (1/3)* [ Log₄(1/4) + Log₄√2 ]
= ( 1/3) * [ Log₄ 1 - Log₄ 4 + ( 1/2)* Log₄2 ]
= (1/3) * [ 0 - 1 + 1/2* ( Log2/Log4) ]
= (1/3)* [ -1 + (1/2)*(1/2)] = 1/3* -3/4 = -1/4
5) Log₃ ( 1/27 )= Log₃ ( 1/3³) = Log₃1 - Log₃ 3³ = 0 - 3* Log₃3 = 0 - 3*1 = -3 .