• Asignatura: Matemáticas
  • Autor: vanequeen12345getv
  • hace 8 años

ctg(x+10°)=tg(x+40°) hallar x

Respuestas

Respuesta dada por: fabrizquierdo
3

Explicación paso a paso:

expresando la ecuación con una sola función trigonométrica

ctg(x+10°)=tg(x+40°)

ctg(x+10°)=tg(x+40°)  \\ ctg(x+10°) - tg(x+40°)  = 0 \\  \frac{cos(x + 10)}{sen(x + 10)}   -   \frac{sen(x + 10)}{cos(x +10) }  = 0 \\  \frac{ {cos}^{2}(x + 10) -  {sen}^{2}(x + 10) }{sen(x + 10) \times cos(x + 10)}  = 0 \\ 1 -  {sen}^{2} (x + 10) -  {sen}^{2} (x + 10) = 0 \\ 1 - 2 {sen}^{2}  = 0 \\  - 2 {sen}^{2} (x + 10 =  - 1 \\  {sen}^{2} (x + 10) =  \frac{1}{2}  \\ sen(x + 10) =  +  -  \frac{1}{ \sqrt{2} }  \\ sen(x + 10) =  +  -  \frac{ \sqrt{2} }{2}  \\ x1+ 10 = 45 \\ x1 = 45 - 10 \\ x1 = 35 \\  \\ x2 + 10 =  - 45 \\ x2 =  - 45 - 10 \\ x2 =  - 55

Preguntas similares