desde la ciudades A y B separadas 790km, parten dos autos con velocidad constante de 70km/h y 90km/h. respectivamente. el primer auto parte a las 06h30 y el segundo media hora antes. calcula la hora del dia en que se produce el cruce de ambos autos y la distancia recorrida desde la ciudad
Respuestas
El móvil A y el móvil B se cruzan a las 11:09 am
Haciendo el estudio del problema, tomando como referencia las 6:30am momento en le cual ambos autos están ya en movimiento y poniendo como origen del sistema coordenado a la ciudad A, tenemos que:
Datos:
Xoa = 0 [Km] (posición del auto B a las 6:30am)
Va = 70 [Km/h]
Xob = 745 [Km/h] (posición del auto B a las 6:30am)
Vb = -90 [Km/h]
Ta = Tb = T
Xa = Xb = X
Asumiendo que los 2 cuerpo de desplazan con MRU se pide calcular en que instante del se cruzan ambos móviles, para ello se usaran la siguiente ecuaciones:
Xa = Xoa + Va·Ta (I)
Xb = Xob + (-Vb)·Tb (II)
Para ello se necesita igualar la ecuación (I) con (II), asumiendo la condición de que Xb = Xa , entonces:
Xoa + Va·Ta = Xob - Vb·Tb
Ya que necesitamos saber en que instante se cruzan ambos móviles, tenemos que Ta = Tb = T, agrupando términos y despejando:
Va·T + Vb·T = Xob - Xoa
T (Va + Vb) = Xob - Xoa
T = ( Xob - Xoa ) / (Va + Vb)
Sustituyendo los datos tenemos que :
T = ( 745 - 0 ) / (70+ 90)
T = 4,65[h]
Hora del día = 6,5 + 4,65 = 11,15 [h]
Transformando el resultado a horas tenemos que los autos se cruzan a las 11:09 am
Para determinar la distancia recorrida desde la ciudad A por el móvil A a las 11:09 am, tenemos que:
Xa = 0 [Km] + 70 [Km/h] · 4,65[h]
Xa = 325,5 [Km]
Para determinar la distancia recorrida desde la ciudad B por el móvil B a las 11:09 am, tenemos que:
Xa = 745 [Km] - 90 [Km/h] · 4,65[h]
Xa = 326,5 [Km]