Ernesto y su padre conducen desde su casa hasta una ciudad situada a
490 km de distancia. Parten al mismo tiempo y la rapidez a la que conduce Ernesto es 3 km/h mayor que la de su padre. Si Ernesto llega una hora
antes que su padre, ¿a qué velocidad conduce cada uno?

Respuestas

Respuesta dada por: MaryaleB
9

La velocidad con la que conduce ernesto es de 39.87 Km/h y el papá a una velocidad de 36.97 Km/h

Datos

Ernesto

X(o) = 0m

V = V + 3 km/h

X = 490km

Papá:

X(0) = 0m

V = V km/h

X = 490km

Ecuación MRU

X = Xo + V*t

Sustituyendo los datos de Ernesto

490 = 0 + (V+3)t

Despejo t

t = 490/V+3

Sustituyendo Los datos del papá

sustituimos t = t+1 debido a que el tiempo t es el tiempo que duro ernesto en llegar a los 490km y (t+1) es la hora después que llego el padre  

490 = 0 + V(t+1)

Sustituyendo  t

490 = V ( (490/V+3) +1 )

490=\frac{V^2+493V}{V+3}

490\left(V+3\right)=V^2+493V

Simplificando tenemos

V^2+3V-1470=0

Aplicando La resolvente: x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

Con dos valores posibles de V

V=\frac{-3+\sqrt{5889}}{2},\:V=\frac{-3-\sqrt{5889}}{2}

V= 36.87  , V = -39.87

Tomamos el valor positivo debido que el otro es absurdo

entonces tenemos que:

La velocidad que conduce el papa es de 36.87 km/h y la velocidad de Ernesto es de 36.87km/h + 3Km/h = 39.87Km/h

Preguntas similares