Respuestas
La función decreciente es y = -3x + 1, pues es la única con pendiente negativa
Una función f(x) es estrictamente creciente si para cuales quieras números a y b tales que a > b entonces f(a) > f(b)
Una función f(x) es estrictamente decreciente si para cuales quieras números a y b tales que a > b entonces f(a) < f(b)
Tenemos que si:
f(x) = kx + b
Si k > 0, sean a y b dos números distintos donde a > b ⇒ a - b > 0
f(a) = k*a + b
f(b) = k*b + b
f(a) - f(b) = k*a + b - k*b - b = k*a + k*b = k*(a - b)
Ahora como a a - b > 0 y k > 0 entonces k*(a - b) > 0
f(a) - f(b) = k*(a - b) > 0
Por transitividad:
f(a) > f(b) La función es estrictamente creciente.
Si k < 0, sean a y b dos números distintos donde a > b ⇒ a - b > 0
f(a) = k*a + b
f(b) = k*b + b
f(a) - f(b) = k*a + b - k*b - b = k*a + k*b = k*(a - b)
Ahora como a a - b > 0 y k < 0 entonces k*(a - b) < 0
f(a) - f(b) = k*(a - b) < 0
Por transitividad:
f(a) < f(b) La función es estrictamente decreciente.
Por lo tanto:
En una recta f(x) = kx + b si es positivo la función es estrictamente creciente si es negativo es estrictamente decreciente
La única función decreciente de las dadas es y = -3x + 1, pues es la unica con pendiente negativa