ayuda por favor, es para mi examen de admisión.
Si lo logran resolver, les suplico que pongan la resolución ​

Adjuntos:

Respuestas

Respuesta dada por: Soultaker
2

Respuesta:

Primero te pondré en contexto, los números factoriales conocidos por "n!", se interpretan de la siguiente forma, por ejemplo:

n! = 4!, esta cifra puede quedar expresada como: 1 x 2 x 3 x 4 =24.

Por lo tanto, en el ejemplo 4! = 24.

Ahora, volviendo al problema inicial, tenemos:

\frac{71}{14!+1}

14!+1 = (1*2*3*4*5*6*7*8*9*10*11*12*13*14)+1

14!+1=87178291201

Por lo tanto, ahora nos queda: \frac{71}{87178291201}=0,0000000008

Como nos pide la suma de las dos últimas cifras, tenemos que estas son 0 y 8, por lo tanto 0 + 8 = 8.

Preguntas similares