De una producción de 2000 bombillos se sabe que el 5% están defectuosos, si se escoge una muestra de 20 bombillos.

a. ¿Cuál es la probabilidad de que el número de bombillos defectuosos de la muestra no exceda a 3?
b. ¿Cuál es la probabilidad de que el número de bombillos defectuosos en la muestra sea por lo menos 6?
c. ¿Cuál es la probabilidad de que el número de bombillos defectuosos en la muestra sea estrictamente mayor de 2 pero menor o igual a 6?

Respuestas

Respuesta dada por: luismgalli
0

De una producción de 2000 bombillos se sabe que el 5% están defectuosos, si se escoge una muestra de 20 bombillos.

Datos:

p = 0,05

q = 0,95

n = 20

Media:

μ= n*p

μ= 20*0,05

μ = 1

Desviación típica:

σ= √n*p*q  

σ = √20*0,05*0,95

σ = 0,975

Z = (x-μ)/σ

a. ¿Cuál es la probabilidad de que el número de bombillos defectuosos de la muestra no exceda a 3?  

Tipificando:

Z = 3-1/0,975

Z = 2,05 Valor que ubicamos en la tabla de distribución normal

P ( X≤3 ) = 0,97982

La probabilidad de que el numero de bombillos defectuosos no exceda de 3 es de 97,98%

b. ¿Cuál es la probabilidad de que el número de bombillos defectuosos en la muestra sea por lo menos 6?  

Tipificando:

Z = 6-1/0,975

Z = 5,13  Valor que ubicamos en la tabla de distribución normal

P ( X≤6) = Tiende al 100%

La probabilidad de que el numero de bombillos defectuosos no exceda de 6 tiene al 100%

c. ¿Cuál es la probabilidad de que el número de bombillos defectuosos en la muestra sea estrictamente mayor de 2 pero menor o igual a 6?

Tipificando:

Z = 2-1/0,975

Z = 1,03 Valor que ubicamos en la tabla de distribución normal

P ( X≤2 ) = 0,84849

P (2≤x≤6) = 1- (1-0,84849)

P (2≤x≤6) = 0,84849

La probabilidad de que el numero de bombillos defectuosos sea estrictamente mayor de 2 pero menor o igual a 6 es de 84,85%

Ver más en Brainly.lat - https://brainly.lat/tarea/12577314#readmore

Preguntas similares