6. Tildá las casillas cuando la construcción
de un triángulo sea imposible.
O AB = 4 cm; BC = 5 cm; CA = 6 cm
O DE = 2 cm; EF = 5 cm; FD = 3 cm
O GH = 4 cm; HL = 6 cm; LG = 1 cm
OMP = 2 cm; PQ = 3 cm; MQ = 4 cm
O SR = 13 cm; TS = 5 cm ; TR = 12 cm
Respuestas
Respuesta:
Explicación paso a paso:
la suma de 2 catetos cualquiera no debe ser menor o igual a la medida del cateto restante:
DEF 2+3=5 == 5 XXXXXX
GHL 4+1=5 < 6 XXXXXX
es imposible que existan triángulos con esas medidas
Para determinar la existencia de los triángulos dado sus lados basta con evaluar los ángulos atravez del teorema del coseno el cual es:
A² = B² + C² - A*B*cosβ
Para un triangulo de lados A, B, C como se muestra en la imagen de esta ecuación se despeja el termino Cosβ
Cosβ = (B² + C² - A²) / B*C
Este valor debe estar comprendido entre -1 y 1 los cuales son los limites del coseno si una de estos valores no esta en este rango es por que no hay angulo de intersección posible ya que daría un error matemático.
Triangulo a . DE = 3 cm; EF = 4 cm y FD = 5 cm
Cosβ = (B² + C² - A²) / B*C
Sustituyendo:
Cosβ = (3² + 5² - 4²) / 3*5 = 1.2 no existe un angulo para este valor
Triangulo b . DE = 4 cm; EF = 5 cm y FD = 10 cm
Cosβ = (B² + C² - A²) / B*C
Sustituyendo:
Cosβ = (4² + 5² - 10²) / 4*5 = - 2.9 no existe un angulo para este valor
Triangulo c . DE = 5 cm; EF = 7 cm y FD = 5 cm
Cosβ = (B² + C² - A²) / B*C
Sustituyendo:
Cosβ = (5² + 7² - 5²) / 5*7 = 1.4 no existe un angulo para este valor
Triangulo d. DE = 8 cm; EF = 3 cm y FD = 4 cm
Cosβ = (B² + C² - A²) / B*C
Sustituyendo:
Cosβ = (3² + 4² - 8²) / 3*4 = - 3.25 no existe un angulo para este valor
b) Triangulo 1 . DE = 3 cm; EF = 14 cm y FD = 7 cm
Cosβ = (B² + C² - A²) / B*C
Sustituyendo:
Cosβ = (3² + 14² - 7²) / 3*14 = 7.4 no existe un angulo para este valor
Triangulo 2 . DE = 2 cm; EF = 10 cm y FD = 5 cm
Cosβ = (B² + C² - A²) / B*C
Sustituyendo:
Cosβ = (2² + 10² - 5²) / 2*10 = 3.95 no existe un angulo para este valor