si: senx+cosx=n
hallar
E=tgx+ctgx+secx+cscx

Respuestas

Respuesta dada por: CristianFRC
11
\sin(x)+\cos(x)=n \\ 
E=\tan(x)+\cot(x)+\sec(x)+\csc(x)
= \frac{\sin(x)}{\cos(x)} + \frac{\cos(x)}{\sin(x)} + \frac{1}{\cos(x)} + \frac{1}{\sin(x)} \\ 
= \frac{sin(x)+1}{\cos(x)} + \frac{\cos(x)+1}{sin(x)}   \\ 
= \frac{sin^2(x)+sin(x)+cos^2(x)+cos(x)}{\sin(x)*\cos(x)} 
 \\ sin^2(x)+cos^2(x)=1 \\ sin(x)+cos(x)=n
 \\ E= \frac{n+1}{sin(x)*cos(x)}
Respuesta dada por: jorge4869
0

Explicación paso a paso:

Hhhhjutt6hhyrtbbhyty

Preguntas similares