El departamento de servicio social de un determinado país está interesado en estimar el ingreso medio semestral de 1585 familias que viven en una sección de siete manzanas de una comunidad. Tomamos una muestra aleatoria simple y encontramos los siguientes resultados:

n igual 97

envoltorio arriba x igual 14155

s igual 1185

El departamento nos pide que calculemos una estimación de intervalo del ingreso anual medio de las 1585 familias, de modo que pueda tener el 93% de confianza de que la media de la población se encuentra dentro de ese intervalo.

Respuestas

Respuesta dada por: capital97
1

El intervalo de confianza del departamento de servicio social asociado al ingreso medio semestral de 1585 familias, es:

Limite superior del intervalo: 14372.77652    

Limite inferior del intervalo: 13937.22348

Para hallar con dicho intervalo debemos aplicar la siguiente formula:    

Xn + ó -  Z α/2 * σ/√n     

Leyenda:      

  • Donde Xn es la media muestral,  Z α/2 el intervalo de confianza relacionado , σ la desviación típica de la media y n la muestra.      

Datos:    

  • Xn = 14155    
  • σ =  1185    
  • n=  97    
  • Zα/2 , según la tabla de distribución Normal, que corresponde al porcentaje del enunciado:  1.81    

Intervalo de confianza:      

(Xn)% = Xn +- Zα/2 * σ /√n      

(Xn)% = 14155 ± 1.81 * 120.3185206

(Xn)% =  14155 ± 217.7765222  

Limite superior del intervalo: 14372.77652    

Limite inferior del intervalo:13937.22348    

ヘ( ^o^)ノ\(^_^ )Si quieres aprender más de Estadística,te comparto este enlace para complementar tu aprendizaje:

https://brainly.lat/tarea/7142581

Preguntas similares