La figura anterior representa un círculo de centro O. CD y AB contienen a O. AB = 2. Calcula la longitud del arco CB.

A) 1/6
B) π/6
C) π/3
D) 5π /6 (Se supone que esta es la correcta)
E) 6π

Adjuntos:

Respuestas

Respuesta dada por: angiemontenegr
0

Respuesta:

Opción D)

Explicación paso a paso:

Te dejo gráfica en la parte inferior para mayor comprensión del problema.

De la gráfica.

El ∡30° = ∡m    Por opuestos por el vertice

Total circunferencia = 360°

∡30 + ∡m + ∡p + ∡Q = 360°        Pero ∡m = 30°

30° + 30° + ∡P + ∡Q = 360°

60° + ∡P + ∡Q = 360°                  Pero ∡Q y ∡P son iguales por ser

                                                      opuestos por el vértice

60° + ∡Q + ∡Q = 360°

2∡Q = 360° - 60°

2∡Q = 300°

∡Q = 300°/2

∡Q = 150°

El ángulo Q es un ángulo central por tener su vértice en el centro de la circunferencia y se cumple que:

El valor del arco que intercepta es = al valor del angulo

Arco CB = ∡Q

CB = 150°

Lo pasamos a radianes.

π = 180°

Por regla de 3 simple directa .

π = 180°

x = 150°

x = 150°π/180°       Simplificamos grados y un cero

x = 15π/18              Simplificamos sacamos tercera

x = 5π/6

Adjuntos:
Preguntas similares