la alineación de cinco rectángulos congruentes forman otro rectángulo más grande con superficie total 120 centímetros cuadrados. ¿Cuál es el perímetro del rectángulo pequeño
Respuestas
El perímetro del rectángulo pequeño, que se encuentra alineado con otros cuatro rectángulos congruentes formando un rectángulo cuya superficie total es 120 cm² es igual a 20 cm.
Datos:
120 cm² = Superficie total rectángulo grande
5 = cantidad de rectángulos pequeños
24 cm² = superficie total de cada rectángulo pequeño (120/5)
Fórmulas:
Perímetro de un rectángulo: 2L + 2A → 2 (L + A)
Área de un rectángulo: L × A
Sabiendo que el área es 24 cm², buscamos un par de números que multiplicados den 24.
Las opciones serían 12 × 2, 8 × 3, 6 × 4
Es necesario que su altura o ancho x 3 sea el largo del rectángulo grande y su largo x 2 sea el ancho del rectángulo grande segpun se observa en la imagen.
El único par de números que cumplen esta condición es 6 x 4, ya que:
6 multiplicado por 2 es igual a 12
4 multiplicado por 3 es igual a 12.
El rectángulo grande quedaria con las siguientes dimensiones.
Largo 6 × 2 = 12 (según se observa en la imagen)
ancho 6 + 4 = 10 (según se observa en la imagen)
Superficie del rectángulo grande = 12 × 10 = 120 cm² que coincide con el área del enunciado.
Cálculo del perímetro de los rectángulos pequeños:
P = 2 (6 + 4)
P = 2 × 10
P = 20 cm