De 120 alumnos se obtuvo lo siguiente: 45 aprobaron lenguaje, 46 inglés y 38 matemática; además 7 aprobaron lenguaje e
inglés, 8 inglés y matemática, 10 matemática y lenguaje y 4 aprobaron las 3 asignaturas. ¿Cuántos no aprobaron ninguna
asignatura? ¿Cuántos aprobaron solo dos asignaturas?
Respuestas
Del problema de los 120 alumnos que aprobaron y desaprobaron los cursos de Lenguaje, Ingles y Matemática encontramos que:
- Los que no aprobaron ninguna asignatura son: 12
- Los que aprobaron solo dos asignaturas son: 13
1. Para resolver, no olvide graficar el problema colocando todos los datos que nos brinda el problema y asignado una variable a aquellos datos que no tenemos. Lo dejo en imagen adjunta.
Nos piden hallar:
- x+y+z = ?
- m = ?
2. Del problema sabemos que, la suma de todas las variables del gráfico más 4 es 120:
A+B+C+x+y+z+4+m = 120 ... (1)
3. Luego encontramos x+y+z, que justo es una de las preguntas del problema:
x + 4 = 10 +
y + 4 = 7
z + 4 = 8
x + y + z + 12 = 25
x + y + z = 25 - 12
x + y + z = 13 ... (2)
4. Ahora podemos encontrar A+B+C
A + x + y + 4 = 45
B + y + z + 4 = 46
C + x + z + 4 = 38
A+B+C + 2x+2y+2z + 12 = 129
A+B+C + 2(x+y+z) = 129-12
A+B+C + 2(x+y+z) = 117
Reemplazamos el valor encontrado en (2)
A+B+C + 2(13) = 117
A+B+C + 26 = 117
A+B+C = 117-26
A+B+C = 91 ...(3)
5. Finalmente, reemplazamos (2) y (3) en (1) para hallar m que es la otra pregunta del problema:
A+B+C+x+y+z+4+m = 120
91 + 13 + 4 + m = 120
108 + m = 120
m = 120 - 108
m = 12