• Asignatura: Biología
  • Autor: florezpaezsharickcam
  • hace 8 años

how many terms of the arithmetic progression 9,17,25,33... must be taken to get a sum of 636

Respuestas

Respuesta dada por: irmajulia
19

You need 12 terms to get a sum of 636 in the arithmetic progression.

1. This is the arithmetic progression:

9       17        25       33 ...          x_{n}

  +8        +8        +8       +8

2. There is a rule to get de last term of the progression:

x_{n}=x_{1}+(n-1)d

where:

x_{n} Is the last term

x_{1} Is de first term

n Is the amount of terms

d Is the difference between terms

We replace the values:

x_{n}=9+(n-1)8\\\\x_{n}=9+8n-8\\\\x_{n}=8n+1 ...(1)

3. The rule to get the SUM is:

S=n(\frac{x_{1}+x_{n}}{1}) .. (2)

We can replace (1) in (2)

636=n(\frac{n(9+8n+1)}{2})\\\\636=n(\frac{10+8n}{2})\\\\636=5n+4n^2

5n+4n^2-636=0

This kind of equation have this rule:

ax^2+bx+c=0\\\\x=\frac{-b+\sqrt{b^2-4ac}}{2.4}

Replacing values:

n=\frac{-5+\sqrt{5^2-4.4(-636)}}{2.4}\\\\n=\frac{-5+\sqrt{25+10176)}}{8}\\\\n=\frac{-5+\sqrt{10201)}}{8}\\

We have two options:

n_{1}=\frac{-5+101}{8}=\frac{96}{8}=12\\\\n_{2}=\frac{-5-101}{8}=\frac{-106}{8}=-\frac{53}{4}

We take the value n=12


vivipaoto23: muy bien
anita6667: Mm español pis
Preguntas similares