One cylinder contains 0.1 mol of an ideal monatomic gas at a pressure of 1.0x105 Pa with a volume of 2.5x10-3 m3. Assuming that the gas expands to three times its initial volume, it determines the final gas temperature if the expansion is adiabatic.
Respuestas
Respuesta dada por:
2
The final temperature is T₂ =14,66 K
Explanation:
A relation for a process of abdicative expansion of an ideal gas is given by the following expression:
TV^(γ-1) = ctte -----> T₁V₁^(γ-1) = T₂V₂^(γ-1) .:. We calculate variable T1
For the calculation of the initial temperature (T1) we use the ideal gas equation:
PV = nRT
Data:
R = 0,082 kJ/kgK
V1 = 2,5x10^-3 m^3
P1 = 1x10^5 Pa
n = 0,1 mol
If we clear T1
T1 = P1V1/nR
T1 = 100Kpa * 2,5x10^-3 m^3 / 0,1 mol * 0,082 kJ/kgK
T1 = 30,49 K .:. We substitute this value in the initial equation:
T₁V₁^(γ-1) = T₂V₂^(γ-1) .:. We clear T2
T₂ = T₁V₁^(γ-1) / V₂^(γ-1)
γ = 5/3 (gas monatomic)
T₂ = 30,49 K (2,5x10^-3 m^3)^(5/3-1) / (3*2,5x10^-3 m^3)^(5/3-1)
T₂ =14,66 K
Preguntas similares
hace 6 años
hace 6 años
hace 9 años
hace 9 años
hace 9 años
hace 9 años