• Asignatura: Matemáticas
  • Autor: fernando02chilado
  • hace 8 años

Sí duplicamos el lado de un cuadrado su área aumenta en 147 cm2 ¿Cuánto mide el lado del cuadrado?

Respuestas

Respuesta dada por: Sky66
52

Respuesta:

El lado de cuadrado mide 7 centímetros

Adjuntos:

fernando02chilado: Aplicando el teorema de Pitágoras, se tiene:

 

7^2 = (x^2) + (x^2) (porque los lados de una cuadrado son iguales)

 

==> 49 = 2(x^2)

==> x^2 = 49 / 2

==> x = 7 / raíz cuadrada de (2)

 

==> x = [7 * raíz cuadrada de (2)] / 2   cm

Ver más en Brainly.lat - https://brainly.lat/tarea/27441#readmore
Respuesta dada por: Rufitibu62
10

Si al duplicar el área de un cuadrado, su área aumenta en 147 cm², el lado del cuadrado mide 7 centímetros.

¿Cómo determinar el Área de un Cuadrado?

Para un cuadrado de lado "L", su área se determina con la expresión:

A = L²

Si llamamos "L" al lado del cuadrado, su área mide:

A = L²

Luego, si se duplica el lado, se escribe como "2L".

A₂ = (2L)²

A₂ = 4L²

Además, al duplicar el lado su área aumenta en 147 cm², por lo que se puede plantear la expresión:

A₂ = A + 147 cm²

Si se sustituyen las fórmulas de área se obtiene:

4L² = L² + 147

4L² - L² = 147

3L² = 147

L² = 147/3

L² = 49

L = √49

L = 7

Por lo tanto, el lado del cuadrado mide 7 centímetros.

Ver más sobre Área de Cuadrado en https://brainly.lat/tarea/4374354

#SPJ2

Adjuntos:
Preguntas similares