Usar el teorema de Taylor para hallar la solución en serie de y'=〖 y〗^2-x con la condición inicial y = 1 en x = 0.
Respuestas
Respuesta dada por:
2
La solución en serie de Taylor es:
El teorema de taylor es un teorema que permite encontrar un aproximación polinómica a una función dicha aproximación esta dada por:
Tenemos que:
y'(x) = y² -x
y(0) = 1
y'(0) = y(0)²-0 = 1-0 = 1
Calculamos el resto de las derivadas implicitas hasta n= 5
y''(x) = 2yy'-1 ⇒y''(0) = 2*y(0)*y'(0)-1 = 2*1*1-1 = 2-1 = 1
y'''(x) = 2(y'y'+y''y) ⇒y'''(0) = 2*(1*1+1*1) = 2*2= 4
y⁴(x) =2*(2y'y''+y'''y+y'y'') = 2*(3y'y''+y'''y) ⇒y⁴(0) = 2*(3*1*1+4*1) = 2*(7) = 14
y⁵(x) =2*(3*(y''y''+y'''y')+y⁴y+y'y''') ⇒y⁵(0) = 2*(3*(1*1+4*1)+14*1+1*4) =2*(15+14+4)= 66
Por lo tanto la solución en serie sera:
La solución en serie es entonces:
Preguntas similares
hace 6 años
hace 6 años
hace 9 años
hace 9 años
hace 9 años
hace 9 años