2. Aire se encuentra confinado en un cuarto de 10m3 que se encuentra aislado térmicamente y cuya temperatura es de 20°C, si se introduce un calentador eléctrico de 1kW y se deja funcionar durante 20 minutos, calcule el cambio de entropía que se genera en el sistema.
tema es termodinamica
Respuestas
El aire confinado en un cuarto genera un cambio de entropía de 2507 J/K, al introducir 1 kW de potencia al mismo por 20 minutos.
Explicación paso a paso:
El cambio de entropia del sistema, considerando el volumen constante viene dado como:
- ΔS = n·Cv·ln(T₂/T₁)
Ahora, necesitamos varios datos, entre ellos la temperatura final y los moles de aire.
1- Para la temperatura final debemos aplicar ecuación de calor, tal que:
Q = m·cp·ΔT
Entonces, tenemos la potencia que es el calor por unidad de tiempo, el calor especifico del aire es de 1012 J/kg·K, entonces:
(1000 W)·(1200s) = (10 m³)·(1.225 kg/m³)·(1012 kJ/kg·K)·(Tf - 20ºC)
96.80 ºC = Tf - 20ºC
Tf = 116.80 ºC
2- Tenemos la temperatura final e inicial, buscamos la cantidad de moles de aire, tal que:
n = (1 mol/ 29g)·(10 m³)·(1225 g/m³)
n = 422.41 moles
Finalmente, el aire se comporta como un gas diatómico, por lo que Cv = (5/2)·R que viene siendo 20.8 J/mol·K.
Entonces, calculamos el cambio de entropía:
ΔS = (422.41 mol)·(20.8 J/K·mol)·ln([116.80 + 273.15]/[20+273.15])
ΔS = 2507 J/K
Entonces, el sistema genera un cambio de 2507 J/K de entropía.
NOTA:
- En la ecuación de entropía la temperatura va en Kelvin, es decir absoluto.
- La R es la constante de gas ideal 8.31 J/mol·K
- El peso molar del aire es de 29 g/mol.