Dos vértices consecutivos de un cuadrado son los puntos (2;1) (5;1), determina los otros dos vértices:

Respuestas

Respuesta dada por: carlacasa
2

sus dos otros vértices consecutivos se encuentran  en los puntos (2;4) (5;4)


emivalery: como hallo eso?
carlacasa: tienes que realizar respectiva la gráfica con los puntos q te da a conocer
Respuesta dada por: yredk
0

Si dos vértices consecutivos de un cuadrado son los puntos (2;1) (5;1), entonces los otros dos vértices son (2;4) y (5;4) y esto se logra calculando las distancias o longitudes entre los dos primeros puntos.

Antes de realizar este ejercicio debemos tener en cuenta lo siguiente:

-Todos los lados de un cuadrado tienen la misma longitud.

Llamemos punto A al vértice  A(x₁;y₁)=(2;1) y B al vértice B(x₂;y₂)=(5;1)

Notemos que tanto A como B tienen el mismo valor de la coordenada "y" por lo tanto representan un lado del cuadrado ya que son vértices consecutivos.

Calculemos la distancia  en el eje "x" del vértice B al A

distancia=x₂-x₁=5-2=3

Así cada lado del cuadrado debe tener una longitud de 3.

Para calcular las otras dos aristas llamemosla C(x₃,y₃) y D(x₄,y₄) solo debemos sumar la magnitud 3 a la coordenada del eje "y" de A y B

Así que:

C(x₃,y₃)=(2; 1+3)=(2;4)

D(x₄,y₄)=(5;1+3)=(5;4)

Finalmente hemos hallado las otros dos vértices del cuadrado.

Preguntas similares