Hallar las coordenadas de los vértices de un triángulo sabiendo que las coordenadas de los puntos medios de sus lados son (-2,1) (5,2) y (2,-3)
Respuestas
El método más sencillo lo brinda el álgebra de vectores.
El triángulo buscado tiene sus lados paralelos a triángulo de los puntos medios y miden el doble que el triángulo interior
Buscamos los vectores de los lados interiores.
Un vértice se obtiene sumando a uno de los puntos el vector correspondiente. El vértice del mismo lado se obtiene restando del punto medio correspondiente el vector anterior.
Vector U = (5, 2) - (2, - 3) = (3, 5)
Los vértices del lado paralelo al vector U son los puntos A y B
OA = (- 2, 1) + (3, 5) = (1, 6)
OB = (- 2, 1) - (3, 5) = (- 5, - 4)
Vector V = (5, 2) - (- 2, 1) = (7, 1)
Los vértices del lado lado paralelo al vector V son los puntos C y B
OC = (2, - 1) + (7, 1) = (9, - 2)
Verificamos el punto B
OB = (2, - 3) - (7 , 1) = (- 5, - 4)
Se adjunta dibujo con los dos triángulos
Mateo
Las coordenadas de los vértices del triángulo son:
A(-5, -4)
B(1, 6)
C(9, -2)
Explicación paso a paso:
Datos;
Puntos medio
- Pm₁(-2,1)
- Pm₂(5,2)
- Pm₃(2,-3)
La formula de punto medio entre dos puntos o vértices es:
Pm = (x₁ + x₂)/2 ; (y₁+ y₂)/2
Punto medio 1:
(-2, 1) = (x₁ + x₂)/2 ; (y₁+ y₂)/2
-2 = (x₁ + x₂)/2 ⇒ -4 = (x₁ + x₂) ⇒ x₁ = -4 - x₂
1 = (y₁+ y₂)/2 ⇒ 2 = (y₁+ y₂) ⇒ y₁ = 2- y₂
Punto medio 2:
(5, 2) = (x₂ + x₃)/2 ; (y₂+ y₃)/2
5 = (x₂ + x₃)/2 ⇒ 10 = (x₂ + x₃) ⇒ x₃ = 10-x₂
2 = (y₂+ y₃)/2 ⇒ 4 = (y₂+ y₃) ⇒y₃ = 4-y₂
Punto medio 3:
(2,-3) = (x₃ + x₁)/2 ; (y₃+ y₁)/2
2 = (x₃ + x₁)/2
4 = (x₃ + x₁)
Sustituir;
4 = 10-x₂ -4-x₂
4 = 6 -2x₂
2x₂ = 2
x₂ = 1
-3= (y₃+ y₁)/2
-6 = (y₃+ y₁)
-6 = 4-y₂ + 2-y₂
-6 = 6 -2y₂
2y₂ = 12
y₂ = 6
B(1, 6)
sustituir;
x₁ = -4 - 1
x₁ = -5
y₁ = 2- y₂
y₁ =2 - 6
y₁ = -4
A(-5, -4)
x₃ = 10-x₂
x₃ = 10- 1
x₃ = 9
y₃ = 4-y₂
y₃ = 4 -6
y₃ = -2
C(9, -2)
Puedes ver un ejercicio relacionado aquí: https://brainly.lat/tarea/3414555.