• Asignatura: Matemáticas
  • Autor: ghelsi10p5lp97
  • hace 8 años

Juliana tiene dos tíos, Andres y Ricardo, cuyas edades actuales son como 5 es a 4. Si hace 15 años la relación era de 2 a 1, ¿cual es la suma de sus edades actuales?

Respuestas

Respuesta dada por: brainjf57
12

Respuesta:

La suma de sus edades actuales es 45 años

Explicación paso a paso:

Si "x" es la edad de Andrés  ;  "y " es la edad de  Ricardo

Relación de edades actuales  

x/y = 5/4

Hace 15 años

( x - 15 ) / (y - 15 ) = 2/1

Despejamos "x" de ambas relaciones

x = 5/4 y  

x - 15 = 2 ( y - 15 )  

x = 2y - 30 + 15  

x = 2y - 15

igualamos

5/4 y = 2y - 15  

despejamos "y"   ( edad de Andrés )

5/4 y - 2y = - 15  

5/4 y - 8/4 y = - 15  

- 3/4 y = - 15  

y = ( - 15 ) ( 4 ) / - 3  

y = - 60 / - 3  

y = 20 años  

Calculamos "x"   ( edad de Ricardo )

x = 2 ( 20 ) - 15  

x = 40 - 15    

x = 25 años  

Suma de edades  

20 + 25 = 45 años


brainjf57: :) buen día !!!
Respuesta dada por: mgangel0020
0

  La suma de las edades de los tíos de Juliana es de 45 años

¿Qué es ecuación?

   Una ecuación se define como una igualdad de expresiones algebraicas o aritméticas, que no tiene limites exponenciales o de funciones como logaritmos, entre otros..

 Son usadas para modelar problema se incluso graficar resultados.

  Tomamos en cuenta la razón que hay entre las edades actualmente y hace 15 años y nos quedan las siguientes ecuaciones:

  • 4A = 5R  ⇒  A  =5R/4
  • A - 15 = 2(R - 15)

Sustituimos A en la ecuación del pasado:

5R/4 - 15 = 2R - 30

5R/4 - 2R = -30 + 15

-3R/4 = -15

-3R = 60

R = 60/3

R = 20, La edad de Ricardo es de 20 años

Entonces Andres tendra

A = 5(20)/4

A = 100/4

A = 25 Años

A + R = 25 + 20 = 45 años

Aprende más sobre ecuaciones en:

https://brainly.lat/tarea/12060577

Adjuntos:
Preguntas similares