• Asignatura: Matemáticas
  • Autor: juliangonzalez09
  • hace 8 años

Resuelva por el método gráfico el problema que satisface las inecuaciones:
4X1 + 2X2 ≤ 24
2X1 + 3X2 ≤ 48
3X1 + 2X2 ≤ 18
Identifique las condiciones respuesta de: Punto de respuesta de las variables (intersección de
las rectas).

Respuestas

Respuesta dada por: Osm867
1

Entre la primera y segunda inecuación: x1 = -3, x2 = 18

Entre la primera y la tercera inecuación: x1 = 6, x2 = 0

Entre la segunda y la tercera inecuación: x1 = -8.4, x2 = 21.6

Explicación.

Para resolver este problema se deben resolver las inecuaciones en parejas y encontrar los puntos de corte, como se muestra a continuación:

Entre la primera y segunda inecuación:

4X1 + 2X2 ≤ 24

2X1 + 3X2 ≤ 48

Se multiplica por -2 la segunda y se suman ambas inecuaciones:

4X1 + 2X2 ≤ 24

-4X1 - 6X2 ≤ -96

-4X2 = -72

X2 = 18

x1 = -3

Entre la primera y la tercera inecuación:

4X1 + 2X2 ≤ 24

3X1 + 2X2 ≤ 18

Se multiplica por -1 la inferior y se suman ambas:

4X1 + 2X2 ≤ 24

-3X1 - 2X2 ≤ -18

X1 = 6

X2 = 0

Entre la segunda y la tercera inecuación:

2X1 + 3X2 ≤ 48

3X1 + 2X2 ≤ 18

Se despeja X1 de la superior y se sustituye en la restante:

X1 = 24 - 3X2/2

Sustituyendo:

3(24 - 3X2/2) + 2X2 ≤ 18

X2 = 21.6

X1 = -8.4

Ver más en Brainly.lat - https://brainly.lat/tarea/11485226#readmore

Adjuntos:

microbus1996: compañero Osm867 buenos días, compañero esta respuestas creo que no van acorde con este ejercicio sera que me puedes ayudar resolviendo este ejercicio con las variables que nos piden allí gracias.
Preguntas similares