Respuestas
Para qué sirve la notación científica (ventajas)
La notación científica es una notación compacta que facilita comparaciones y operaciones con números muy grandes o muy pequeños.
En algunos campos de estudio se pueden encontrar magnitudes muy grandes o muy pequeñas que distan por mucho de lo que nuestros sentidos pueden procesar.
La notación científica permite expresar cualquier número como el producto de un número entre 1 y 10, y una potencia de 10.
Ejemplo 1:
Algunas estimaciones señalan que el universo tiene 15 mil millones de años, esto es:
15,000,000,000=1.5X10^{10} años
Ejemplo 2:
La distancia que la luz recorre en un año es de 9,460,000,000,000 kilómetros, lo que se puede expresar en notación científica como:
9,460,000,000,000=9.46X10^{12} kilómetros
Ejemplo 3:
El diámetro de un protón es de 0.000 000 000 000 001 milímetros, lo que se expresa como:
0.000 000 {0.2cm} 000 {0.2cm} 000 {0.2cm} 001=1X10^{-15} milímetros
Ejemplo 4:
El diámetro de un glóbulo rojo es de 0.0000075 milímetros, y se expresa en notación científica como:
0.000 {0.2cm} 007 {0.2cm} 5=7.5X10^{-6} milímetros
Ejemplo 5:
La distancia de Icarus, una estrella muy lejana, a la Tierra se estima en 9,000,000,000 de años luz de nosotros. Esto es:
9,000,000,000=9X10^{9} años luz
La notación científica, también denominada patrón o notación en forma exponencial, es una forma de escribir los números que acomoda valores demasiado grandes (100 000 000 000) o pequeños (0.000 000 000 01) para ser escrito de manera convencional. El uso de esta notación se basa en potencias de 10 (los casos ejemplificados anteriormente en notación científica, quedarían 1 × 1011 y 1 × 10−11, respectivamente). El módulo del exponente en el caso anterior es la cantidad de ceros que lleva el número delante, en caso de ser negativo (nótese que el cero delante de la coma también cuenta), o detrás, en caso de tratarse de un exponente positivo.
Siempre el exponente es igual al número de cifras decimales que deben correrse para convertir un número escrito en notación científica en el mismo escrito en notación decimal. Se desplazará a la derecha si el exponente es positivo y hacia la izquierda si es negativo. Cuando se trata de convertir un número en notación decimal a notación científica el proceso es a la inversa.
Como ejemplo, en la química, al referirse a la cantidad de entidades elementales (átomos, moléculas, iones, etc.), hay una cantidad llamada cantidad de materia (mol).
Un número escrito en notación científica sigue el siguiente patrón:
m x 10 (e)
El número m se denomina «mantisa» y e el «orden de magnitud La mantisa, en módulo, debe ser mayor o igual a 1 y menor que 10, y el orden de magnitud, dado como exponente, es el número que más varía conforme al valor absoluto.
Observe los ejemplos de números grandes y pequeños:
500 5 x 102
520 5.2 x 102
600 000 6 x 105
30 000 000 3 x 107
500 000 000 000 000 5 x 1014
7 000 000 000 000 000 000 000 000 000 000 000 7 x 1033
0.055 x 10-2
0.052 5.2 x 10-2
0.0004 4 x 10−4
0.000 000 01 1 x 10−8
0.000 000 000 000 000 6 6 x 10−16
0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 8 8 x 10−49
La representación de estos números, tal como se presenta, tiene poco significado práctico. Incluso se podría pensar que estos valores son poco relevantes y de uso casi inexistente en la vida cotidiana. Sin embargo, en áreas como la física y la química, estos valores son comunes. Por ejemplo, la mayor distancia observable del universo mide cerca de 740 000 000 000 000 000 000 000 000 m, y la masa de un protón es de unos 0.000 000 000 000 000 000 000 000 001 67 kg.
Para valores como estos, la notación científica es más adecuada porque presenta la ventaja de poder representar adecuadamente la cantidad de dígitos significativos. Por ejemplo, la distancia observable del universo, de modo que está escrito, sugiere una precisión de 27 dígitos significativos. Pero esto no puede ser verdad (es poco probable 25 ceros seguidos en una medición).
espero te sirva
Respuesta:
ok
Explicación:
Para qué sirve la notación científica (ventajas)
La notación científica es una notación compacta que facilita comparaciones y operaciones con números muy grandes o muy pequeños.
En algunos campos de estudio se pueden encontrar magnitudes muy grandes o muy pequeñas que distan por mucho de lo que nuestros sentidos pueden procesar.
La notación científica permite expresar cualquier número como el producto de un número entre 1 y 10, y una potencia de 10.
Ejemplo 1:
Algunas estimaciones señalan que el universo tiene 15 mil millones de años, esto es:
15,000,000,000=1.5X10^{10} años
Ejemplo 2:
La distancia que la luz recorre en un año es de 9,460,000,000,000 kilómetros, lo que se puede expresar en notación científica como:
9,460,000,000,000=9.46X10^{12} kilómetros
Ejemplo 3:
El diámetro de un protón es de 0.000 000 000 000 001 milímetros, lo que se expresa como:
0.000 000 {0.2cm} 000 {0.2cm} 000 {0.2cm} 001=1X10^{-15} milímetros
Ejemplo 4:
El diámetro de un glóbulo rojo es de 0.0000075 milímetros, y se expresa en notación científica como:
0.000 {0.2cm} 007 {0.2cm} 5=7.5X10^{-6} milímetros
Ejemplo 5:
La distancia de Icarus, una estrella muy lejana, a la Tierra se estima en 9,000,000,000 de años luz de nosotros. Esto es:
9,000,000,000=9X10^{9} años luz
La notación científica, también denominada patrón o notación en forma exponencial, es una forma de escribir los números que acomoda valores demasiado grandes (100 000 000 000) o pequeños (0.000 000 000 01) para ser escrito de manera convencional. El uso de esta notación se basa en potencias de 10 (los casos ejemplificados anteriormente en notación científica, quedarían 1 × 1011 y 1 × 10−11, respectivamente). El módulo del exponente en el caso anterior es la cantidad de ceros que lleva el número delante, en caso de ser negativo (nótese que el cero delante de la coma también cuenta), o detrás, en caso de tratarse de un exponente positivo.
Siempre el exponente es igual al número de cifras decimales que deben correrse para convertir un número escrito en notación científica en el mismo escrito en notación decimal. Se desplazará a la derecha si el exponente es positivo y hacia la izquierda si es negativo. Cuando se trata de convertir un número en notación decimal a notación científica el proceso es a la inversa.
Como ejemplo, en la química, al referirse a la cantidad de entidades elementales (átomos, moléculas, iones, etc.), hay una cantidad llamada cantidad de materia (mol).
Un número escrito en notación científica sigue el siguiente patrón:
m x 10 (e)
El número m se denomina «mantisa» y e el «orden de magnitud La mantisa, en módulo, debe ser mayor o igual a 1 y menor que 10, y el orden de magnitud, dado como exponente, es el número que más varía conforme al valor absoluto.
Observe los ejemplos de números grandes y pequeños:
500 5 x 102
520 5.2 x 102
600 000 6 x 105
30 000 000 3 x 107
500 000 000 000 000 5 x 1014
7 000 000 000 000 000 000 000 000 000 000 000 7 x 1033
0.055 x 10-2
0.052 5.2 x 10-2
0.0004 4 x 10−4
0.000 000 01 1 x 10−8
0.000 000 000 000 000 6 6 x 10−16
0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 8 8 x 10−49
La representación de estos números, tal como se presenta, tiene poco significado práctico. Incluso se podría pensar que estos valores son poco relevantes y de uso casi inexistente en la vida cotidiana. Sin embargo, en áreas como la física y la química, estos valores son comunes. Por ejemplo, la mayor distancia observable del universo mide cerca de 740 000 000 000 000 000 000 000 000 m, y la masa de un protón es de unos 0.000 000 000 000 000 000 000 000 001 67 kg.
Para valores como estos, la notación científica es más adecuada porque presenta la ventaja de poder representar adecuadamente la cantidad de dígitos significativos. Por ejemplo, la distancia observable del universo, de modo que está escrito, sugiere una precisión de 27 dígitos significativos. Pero esto no puede ser verdad (es poco probable 25 ceros seguidos en una medición).
espero te sirva