En una progresion geometrica se tiene:
a) t1=4 t6=972;determine r, t8 y s8
b) t3=20 t7=1620; determine r, t1, s7
c) t5=8 tn=0.5; determine r, t1, s8
Respuestas
Respuesta:
Progresión geométrica .
Explicación paso a paso:
a) t1 = 4 t6 = 972
tn = t1*rⁿ⁻¹ t6 = t1 * r⁵ r⁵ = t6/t1 = 972/4 = 243 r = 3
t8 = t1* r⁸⁻¹ = 4* (3)⁷ = 8748
Sn = t1* ( rⁿ -1)/(r-1)
S8 = 4* ( 3⁸ -1)/(3-1) = 13120
b) t3 = 20 t7 = 1620
t7 = t3 *r⁴
1620 = 20*r⁴ r= 3
t7 = t1*r⁶ se despeja t1 :
t1 = t7/r⁶ = 1620 / 3⁶ = 20/9
S7 = 20/9* ( 3⁷ -1 )/( 3-1 ) = 21860/9 = 2428.88
c) tn = t5 * rⁿ⁻⁵
0.5 = 8 * rⁿ⁻⁵
1/16 = rⁿ⁻⁵ 1/2⁴ = rⁿ⁻⁵
2⁻⁴ = rⁿ⁻⁵ r = 2 n-5 = -4 n = 1
t5 = t1* r⁴ t1 = 8/2⁴ = 1/2
S8 = 1/2* ( 2¹ -1 )/(2-1) = 1/2
Respuesta:
a) r=3 t8=8748 s8= 13120
Explicación paso a paso:
t1= t8 r2 = 4 t6= t8 r7 = 972
t8=4/r2. t6= 972/r7
4/r2=972/r7
r7 4/r2=972 se resta r7 menos r2 da r5
r5 4 = 972
r5=972/4
r5=243
se divide r5 1/5 da 0.2
r=243 ^ 0.2
r=3