Respuestas
Respuesta dada por:
0
Proporcionalidad directa y proporcionalidad inversa
Las magnitudes proporcionales pueden ser directamente proporcionales o inversamente proporcionales.
¿Cuándo son directamente proporcionales? Cuando al aumentar una de las magnitudes aumenta proporcionalmente la otra. Es decir, si al multiplicar o dividir una de ellas por un número, la otra también se multiplica o divide por ese mismo número.
Sin embargo, son inversamente proporcionales cuando al aumentar una de las magnitudes disminuye proporcionalmente la otra. Es decir, si al multiplicar una de ellas por un número la otra queda dividida por ese mismo número, o viceversa: si al dividir una de ellas entre un número la otra queda multiplicada por este número.
Problemas de proporcionalidad
Ahora vamos a ver algunos problemas de proporcionalidad, pensaremos si son de proporcionalidad directa o inversa y los resolveremos.
Primer problema de proporcionalidad:
Al llegar al hotel nos han dado un mapa con los lugares de interés de la ciudad, y nos dijeron que 5 centímetros del mapa representaban 600 metros de la realidad. Hoy queremos ir a un parque que se encuentra a 8 centímetros del hotel en el mapa. ¿A qué distancia del hotel se encuentra este parque?
Para resolver este problema, debemos pensar en primer lugar si cumple una proporcionalidad directa o inversa. Para ello, pensamos…
Si en lugar de 5 centímetros hablásemos del doble de centímetros en el mapa(10 centímetros), ¿en la realidad serían más metros o menos metros?
Serían más metros: justo el doble de metros en la realidad.
Si al duplicar una magnitud (centímetros) también se duplica la otra (metros) estamos hablando de una proporcionalidad directa.
Por lo tanto, vamos a resolver el problema:
Como 5 centímetros representan 600metros, 1 centímetro representará…
600 : 5 = 120 metros
Como 1 centímetro representa 120metros, 8 centímetros representarán…
120 x 8 = 960 metros
Solución: El parque se encuentra a 960 metros del hotel.
Segundo problema de proporcionalidad:
Ayer 2 camiones transportaron una mercancía desde el puerto hasta el almacén. Hoy 3 camiones, iguales a los de ayer, tendrán que hacer 6 viajes para transportar la misma cantidad de mercancía del almacén al centro comercial. ¿Cuántos viajes tuvieron que hacer ayer los camiones?
Nos preguntamos si cumple una proporcionalidad directa o inversa. Para ello, pensamos…
Si en lugar de 3 camiones hablásemos del doble de camiones (6 camiones), ¿tendrían que hacer más o menos viajes?
Cuantos más camiones carguen mercancía, en menos viajes se cargará toda: necesitarían justo la mitad de viajes.
Si al duplicar una magnitud (camiones) se divide entre dos la otra (viajes necesarios) estamos hablando de una proporcionalidad inversa.
Por lo tanto, vamos a resolver el problema:
Como 3 camiones necesitan hacer 6viajes, 1 solo camión necesitaría hacer…
3 x 6 = 18 viajes
Como 1 solo camión necesitaría hacer 18viajes, los 2 camiones tuvieron que hacer…
18 : 2 = 9 viajes
Solución: Ayer los 2 camiones hicieron 9 viajes cada uno.
espero que Te Sirvaa
Preguntas similares
hace 9 años
hace 9 años