• Asignatura: Física
  • Autor: pipemeco16
  • hace 8 años

Un estudiante ha notado que si conduce de su casa a la universidad con velocidad constante a 46.0 millas por hora, llega 5.6 min más temprano de la hora de entrada a clase, mientras que si conduce a 31.6 millas por hora, llega con 5.6 min de retraso. La distancia en millas entre la casa y la universidad es:

Respuestas

Respuesta dada por: joseantoniopg85
1

Si el estudiante viaja a 46 mph llega 5.6 min antes a clase y si lo hace a 31.6 mph lo hace 5.6 minutos después, como las velocidades son constantes entonces podemos decir

5.6 min x 1 h/ 60 min= 0.09333 horas

Tenemos dos variables, 1 la distancia entre la casa y la universidad, y 2 el tiempo que se tarda para llegar a tiempo a clases

D=Vxt

Si V = 46mph

D= 46x(t-0.093)

Si V= 31.6 mph

D= 31.6.(t+0.093)


Como la distancia es la misma entonces

46x(t-0.093)=31.6x(t+0.093)


Despejamos

1,456t-0.136=t+0.093

t=0.503 h


Ahora sustituimos t en cualquiera de las dos ecuaciones

D=46x(0.503-0.093)= 18, 80 millas




diegoturriago81: despejando t, como da ese reultado de 0,503 h ??
Respuesta dada por: dra4coo
0

Respuesta:

18, 80 millas

Explicación:

Si el estudiante viaja a 46 mph llega 5.6 min antes a clase y si lo hace a 31.6 mph lo hace 5.6 minutos después, como las velocidades son constantes entonces podemos decir

5.6 min x 1 h/ 60 min= 0.09333 horas

Tenemos dos variables, 1 la distancia entre la casa y la universidad, y 2 el tiempo que se tarda para llegar a tiempo a clases

D=Vxt

Si V = 46mph

D= 46x(t-0.093)

Si V= 31.6 mph

D= 31.6.(t+0.093)

Como la distancia es la misma entonces

46x(t-0.093)=31.6x(t+0.093)

Despejamos

1,456t-0.136=t+0.093

t=0.503 h

Ahora sustituimos t en cualquiera de las dos ecuaciones

D=46x(0.503-0.093)= 18, 80 millas

Preguntas similares