• Asignatura: Matemáticas
  • Autor: dilansifurafael
  • hace 8 años

la altura h(en metros)alcanzada por un cohete esta relacionada con el tiempo t(en segundos) transcurrido desde su lanzamiento por la funcion h(t)= 72t-6t², <0.halla la altura maxima alcanzada por el cohete.
con procedimiento por favor

Respuestas

Respuesta dada por: Anónimo
51

primero debes hallar los ceros de la primera derivada, que te dirán los extremos de esa función, aplicas la regla de la segunda derivada que te dirá si los ceros (llamados puntos críticos) son mínimos si h''(c) > 0 o máximos (en nuestro caso) si h''(c) < 0, donde c son los puntos críticos. Lo que hallas es valores para el tiempo, si es un máximo sustityes en la función original h(t) y te dará la altura máxima que alcanzó

Resolvamos,

h(t)=72t-6t²

h'(t)=72-12t

h''(t)=-12

puntos críticos

h'(t)=0

72-12t=0

72=12t

t=72/12

t=6

Esto significa que a los 6 segundos el cohete alcanzó un máximo o un mínimo, veamos sustituyéndolo en la segunda derivada

h''(t)= -12; al no tener variables significa que es una recta horizontal que pasa por y = -12, o sea, es una función constante para cualquier valor de t, entonces

h''(6)= -12 < 0; estos significa que t=6 es punto de máximo (es lo que se quiere)

hallemos la altura máxima que alcanzó el cohete

h(t)=72t-6t²

h(6)=72×6-6×(6)²

h(6)=432-216

h(6)=216

La altura máxima alcanzada por el cohete fue de 216 m


Espero te ayude...

Preguntas similares