3^x=6,calcula g^x-1

Respuestas

Respuesta dada por: artciclonpb9pym
1

Nos dan:

3^x=6

Si f(x) = g(x), entonces In( f(x) ) = In( g(x) ):

\ln \left(3^x\right)=\ln \left(6\right)

Aplicamos propiedades de los logaritmos:

\log _a\left(x^b\right)=b\cdot \log _a\left(x\right)\\\\\ln \left(3^x\right)=x\ln \left(3\right)\\\\x\ln \left(3\right)=\ln \left(6\right)\\\\\frac{x\ln \left(3\right)}{\ln \left(3\right)}=\frac{\ln \left(6\right)}{\ln \left(3\right)}\\\\x=\frac{\ln \left(6\right)}{\ln \left(3\right)}

Ahora, resolvemos lo otro:

g^{\frac{\ln \left(6\right)}{\ln \left(3\right)}-1}\\\\=\frac{\ln \left(6\right)}{\ln \left(3\right)}-\frac{1\cdot \ln \left(3\right)}{\ln \left(3\right)}\\\\=\frac{\ln \left(6\right)-1\cdot \ln \left(3\right)}{\ln \left(3\right)}\\\\=\frac{\ln \left(6\right)-\ln \left(3\right)}{\ln \left(3\right)}\\\\=\frac{\ln \left(2\right)}{\ln \left(3\right)}\\\\=g^{\frac{\ln \left(2\right)}{\ln \left(3\right)}}

Espero haberte ayudado



edi83: muchas gracias me has ayudado ....gracias te lo agradesco
Preguntas similares