Demostrar las siguientes igualdades:
sen(a+b) · cos(a-b)= sen a · cos a + sen b · cos b

Respuestas

Respuesta dada por: DC44
6

sen(a + b) cos(a - b) = (sen a cos b + sen b cos a)(cos a cos b +

sen a sen b)

sen(a + b) cos(a - b) = sen a cos a cos²b + sen²a sen b cos b +

sen b cos b cos²a + sen²b sen a cos a

sen(a + b) cos(a - b) = sen a cos a (sen²b + cos²b) +

sen b cos b (sen²a + cos²a)

sen(a + b) cos(a - b) = sen a cos a (1) + sen b cos b (1)

sen(a + b) cos(a - b) = sen a cos a + sen b cos b


Respuesta dada por: JameJM
0
Hola,

Demostrar la siguiente Identidad Trigonométrica:

 \sin(a + b)  \times  \cos(a - b)  =  \sin(a)  \times  \cos(a)  +  \sin(b)  \times  \cos(b)  \\ ( \sin(a)  \times  \cos(b)  +  \cos(a)  \times  \sin(b) )( \cos(a)  \times   \cos(b)   +  \sin(a)  \times   \sin(b) ) = \sin(a)  \times  \cos(a)  +  \sin(b)  \times  \cos(b)  \\  \sin(a)  \times  \cos(a)  \times  \cos {}^{2} (b)  +  \sin {}^{2} (a) \times  \sin(b)   \times  \cos(b)  +  \sin(b)  \times  \cos {}^{2} (a)  \times  \cos(b)   +  \sin(a)  \times  \sin {}^{2} (b)  \times  \cos(a)  =\sin(a)  \times  \cos(a)  +  \sin(b)  \times  \cos(b)   \\  \sin(a)  \times  \cos(a) ( \cos {}^{2} (b)  +  \sin {}^{2} (b)) +  \sin(b)   \times  \cos(b) ( \cos {}^{2} (a)  +  \sin {}^{2} (a) ) = \sin(a)  \times  \cos(a)  +  \sin(b)  \times  \cos(b)   \\ \sin(a)  \times  \cos(a)(1)  +  \sin(b)  \times  \cos(b) (1) = \sin(a)  \times  \cos(a)  +  \sin(b)  \times  \cos(b)  \\ \sin(a)  \times  \cos(a)  +  \sin(b)  \times  \cos(b)  = \sin(a)  \times  \cos(a)  +  \sin(b)  \times  \cos(b)  \\  \\  \\
Espero que te sirva, Saludos.
Preguntas similares