Respuestas
Respuesta dada por:
9
(a)(a+1)=72 a²+a=72 a=8
Respuesta dada por:
26
Vamos a definir como "n" a un número natural cualquiera, entonces su entero consecutivo será "n+1" y del enunciado sabemos que su producto debe ser igual a "72" entonces podemos expresar eso en lenguaje algebraico.
n(n+1)=72
Ahora resolvemos para "n".
n²+n=72
Pasamos el 72 al otro lado restando
n²+n-72=0
ahora podemos factorizar encontrando un par de números que sumados nos den "1" y multiplicando nos den "72", esos números son.
(n+9)(n-8)=0
Ahora aplicamos el teorema del factor nulo.
n+9=0
n=-9
n-8=0
n=8
Como la condición del problema es que sean números naturales entonces descartamos la solución de n=-9 y nos quedamos con n=8.
Si n=8 entonces los dos números son
n=8
n+1=9
Espero haberte ayudado
n(n+1)=72
Ahora resolvemos para "n".
n²+n=72
Pasamos el 72 al otro lado restando
n²+n-72=0
ahora podemos factorizar encontrando un par de números que sumados nos den "1" y multiplicando nos den "72", esos números son.
(n+9)(n-8)=0
Ahora aplicamos el teorema del factor nulo.
n+9=0
n=-9
n-8=0
n=8
Como la condición del problema es que sean números naturales entonces descartamos la solución de n=-9 y nos quedamos con n=8.
Si n=8 entonces los dos números son
n=8
n+1=9
Espero haberte ayudado
Preguntas similares
hace 6 años
hace 6 años
hace 6 años
hace 9 años
hace 9 años
hace 9 años