Demostrar identidad trabajando un lado: ( (senθ) / (senθ + cosθ) ) = ( (1) / (1-ctgθ) )

Respuestas

Respuesta dada por: CarlosMath
0

 \textbf{Demostrar: } <br />\dfrac{\sin\theta}  {\sin\theta + \cos\theta}  = \dfrac {1 } {1+\cot\theta} \\ \\ \\<br />\textbf{Demostraci\'on}\\ \\ \\<br />E=\dfrac{\sin\theta}  {\sin\theta + \cos\theta}\\ \\<br />\textit{Para $\sin\theta \neq 0$:}\\ \\<br />E=\dfrac{\dfrac{\sin\theta}{\sin\theta}}  {~~~\dfrac{\sin\theta + \cos\theta}{\sin\theta}~~~}\\ \\ \\<br />E=\dfrac{1}{\dfrac{\sin\theta}{\sin\theta}+\dfrac{\cos\theta}{\sin\theta}}\\ \\ \\<br />\boxed{E=\dfrac{1}{1+\cot \theta}}\\ \\ \\<br />

 \text{En realidad...}\\ \\ \\<br />E=\begin{cases}<br />\dfrac{1}{1+\cot\theta}&amp;\text{Para }\theta\neq 2k\pi~ ,~\forall k\in\mathbb Z\\  \\<br />~~~~~0&amp;\text{Para }\theta =2k\pi~ ,~\forall k\in\mathbb Z<br />\end{cases}

Preguntas similares